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Notes on Semi-Implicit Modeling Techniques

One of the most severe constraints in semi-implicit modeling is

related to the requirement of solution of a system of Helmholtz equations.

The usual method of solution by relaxation methods requires large hori-

zontal fields of data in the computer core storage at one time, while

other parts of the computation are more conveniently performed on vertical

strips of data. This dual form of'data use leads to inefficiencies in

data access and greater wall clock times for forecast programs.

As suggested in notes by D. Burridge of the European Meteorological

Center, a program has been written to test a code organization that allows

all calculations in strip form. Basic to this method are (1) that the

system of Helmholtz equations is separated in the vertical to allow their

independent solution, and (2) they are solved by tri-diagonal block

eliminations. The elimination is ordered so that the calculations are

performed alternately in the north-to-south and south-to-north directions.

In order to test these ideas, a model with only the vertical and

one horizontal dimension has been designed. It is used in this note to

illustrate the solution method suggested by D. Burridge, and the

advantages and disadvantages of such a method. Pressure is the vertical

coordinate. The earth's surface is assumed flat. In the usual fashion,

the pressure gradient, divergence, and vertical velocity are averaged

in time. The finite-difference equations are:
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where usual finite-difference notation is used, In addition

---2 t -

) = ½-[C )T-1 + ( )T-1 (7)

The superscript,.T, refers to the time level. Also,

d~~~ *
tk- = dG (8)

is te -derivative of the basic- state Potential temperature with respect

to p in the kth layer. Also

-P~ek = 9k + ek * (9)

If 0, then all fs are re placed by a i wheree kp dpek = Fk + e (lo)

~k = k + k ' (10)

If 1 = 1, then Ok's are the total value. The reason for this

distinction will be seen later. It is also noted that w is the Exner

function,

p (11)
--.0



-3-

and as is the surface specific volume. The data placement is shown

in Figure 1.

Equations (1)-(6) cannot be marched directly ahead in time.

Instead, fields must mutually satisfy all the equations. The

solution is obtained by eliminating all variables, except $k between

the equations. It is convenient to introduce the notation

--at -2t

=k k + Ok+1 (12)

The resulting equation in this variable is

k-1 L
+ 2 (-1 )k (-l) O + (-1 ) I a. j

j=l j=l j

L

+ bk(ApkkY + 2 I Apj ' ) = Xk, k= 1,2,...,L (13)
j=k+l OYY

where the number of layers is L, and

ak =- (At)2 asApk (14)

bk = 4(At)
2 A7Wkekpcp (15)

and

k L
Xk= Gk - 2(-1) [GC + At as jl pJy

L
- dpAwk{T* - ½ At Okp[APkVky + 2 . Ap.V (16)

k k p y j=k+l 0Y
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Once Tk is determined from (13) (more about that in awhile) then the

other variables can be determined from

-it

72 t U (18)vk =vk - Atky

-2t =-t -2t~k~~~~~l + ~~~~~(19)Wk 0"k+l Pkvky (9

with

-L+1 ° (20)~LI= 0

_-2t -2t
=At a + G* (21)!~~ 1

---Pt
V = Tk-½ At ok(g t + Utl) (22)ek = :2 At eO(p .k %k1

-2t -2t
(23)

~k+l =- k- +k (1-O)(q°k k+l

The values of quantities at T+1 are obtained from

fin 2 T-1
( )T+l = 2( ) - ( ) (24)

Solution to the Vertical Problem

The method of solution to (13) will be split into two parts. As

it stands, this equation is a Helmholtz equation involving both the

horizontal and vertical coordinates. In the general three-dimensional

problem, two horizontal directions would be involved. It is desirable

to separate the problem into a series of Helmholtz problems, one for

each layer. Sela and Scolnik (1972) describe a way of doing this

that requires the solution of the equations in a particular order and
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prevents solution by one vertical strip at a time, as will be described

later. Therefore, an alternate method will be used. (This method is

being used by the Canadians and British in their semi-implicit models.)

Equation (13) can be written

C yy + E = F (25)

where

[xI
Ix

= F = (26)

XL

(-al+ blAp1)(-a2+ 2blAp2)(-a3+12blAp3)...(-aL+ 2blApL)

a (a2+ b2AP2) (a3 + 2b2Ap3)...(aL+ 2b2ApL)

-a1 -a 2 (-a 3+ b 3Ap3) ... (-aL+ 2b 3ApL)

C = a1 a2 a 3 ...(aL + 2b4ApL ) (27)

* * O L

L L l L
(-l)aj (-l ) a2 (-1) a 3 -..[(-1) aL+ bL P'L
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The vertical modes of (25) are separated as follows.

C-1 , giving

Dyy + C-1E y = C- 1 F

Find the eigenvalues and eigenvectors of (C-1E)T

(C-1E)T G(i) = X G(i)

Multiply (29) by G(i )

G(i ) . y + G(i).(C- 1EO) = G(i).(C- 1F)

or

Because of

(28)

Multiply through

(29)

(30)

(30a)

(30b)G(i) . + (c-1E)T(G(i). ) = G(i) (C-1F)

(30), this can be written as

G(i) U + WIiG b C-C=1F
G + - G; -1 (30c)

Or, defining

(31)

and

equation (30b) can

Bi. +

Hi = G(i).(C-1F) ,

be written

XiBi = Hi, i = 1,2,,..,L

(31a)

(32)

B.- = G(i) ¢D



-7-

The Xi are the eigenvalues of (C-1E)T (or (C-1E) since it is symmetric)

and G(i) are the corresponding eigenvectors. The L equations, (29), can

be solved independently once the eigenvalues are known. Since C and E

only depend upon basic-state parameters, the X's need be solved for only

once. Once (29) has been solved for the B's, the ¢'s are obtained from

k (G(k))-.Bk , k = 1,2,...,L (33)

Horizontal Solution for the B's

Equation (29) is written in expanded index form as

Bj-li (Ay2 i- 2)Bji + Bj+li = Ay.Hji,

This is to be solved with the boundary condition

f Uk + : -ky = 0

(34)

(35)

or

Biy = G(i) *y =- 2 f G(i).Ui . (36)

Taking into account the boundary conditions, (36), equation (34) is

written in matrix form as

0

0

0

0

1 0 0

a3 i 1 0

1a 11 a4i

0 1 a5i

O 0 0 0

0 0 B 2 i

O 0 B3i

0 0 B4i

o 0 B5i

1 aN_li BN-li

AyH2i+Ay(Biy)3/2

y2H
AY2 H3i

Ay2H4i

AY2H5i

,AY2HN.li- Y(Biy)N-_l

a2 i

1

0

0

0

(37)
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where

a2i = AY2X i- 1

aji = Ay2 Xi - 2 , j = 3,4,...,N-2 (40)

aNnl. = Ay2Xi - 1

N is the number of points in the north-south direction. Equation

(39) is solved by standard methods for tri-diagonal matrices (e.g.,

see Isaacson and Keller, 1966, p. 55). Since it is desired to show

how the present system of equations can be solved one vertical column

at a time, a detailed exposition of the method will be given.

But first, let's put things into perspective. We wish to

solve the system (1)-(6), one vertical column at a time. This is

the counterpart in this model of solving the general problem one

strip at a time, a strip being one row of data extending vertically

through the model. The dimensions of a strip would be NxL, where a

row length is N and L is the number of model levels. In order to

solve (1)-(6) we have formed the equation (13). Equation (13) in

turn has been transformed to (32). In effect, the vertical modes of

the problem have been separated, and solution for the amplitude of each

mode can be obtained separately.

The question is: How can (34) be solved so that we can proceed,

knowing only information for one column at a time? To see the answer

to this question, we now give a detailed account of the solution to

(34). Essentially, the method is one of Gaussian elimination. It is

noted that, for each value of i, (34) represents a set of N equations
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for the Bji's. This is also clear from the equation in matrix form,

(39). The solution proceeds as follows: 1) eliminate B2i from the

third through N-lth equations, 2) eliminate B3i from the fourth

through N-1th equations, 3) proceed as in 1) and 2) for the B4i

through BN_2i. At this point, the last equation can be solved

directly for BN li. The next to last equation only involves BNli

and BN_2i. The third from last equation involves only BNwli,

BN-2i, and BN_3i, etc. Therefore, 4) solve recursively for BN li

BN-2i, BN-3i, ... , B2i, starting from the last equation and ending

with the first.

In particular, the process takes the form of calculating

recursively for

a2i a2i 2i = 1/2i

ji = aji - Yj-l i ' J = 3,4,...,N-1 (41)

Sji = l / j , i = 3,4,...,N-2

Then solve recursively for

g2i = (Ay5H2i + Ay Viy)/a2i

gji = (Ay2Hi.. - g.j-li)/ji , J = 3,4, ... ,N-2 (42)

gNli= (Ay 2HNli- AyViy - gN-2i)/N-li

The back-substitution is obtained by

BN-li gN-li

B..j~~~ i g~ - i , i(43) 
Bj i = j - ¥jiBj + l i
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Now, suppose that we sweep through the data from south to north,

one column (or strip in 3D model) at a time. When we reach the

northern boundary, BN li is known. BNi is known from the boundary

conditions. We can now use (33) to obtain Ok at j=N,N-l. Since

Uk, Vk, and G*, are also known for j=N,N-l, we may use (17)-(23) to

-2t
obtain one column (or strip) of ( ) variables. Equation (24) is

used to obtain a column (or strip) of ( )T+1 variables. We may now

use (43) to obtain another column (or strip) of ( )T+1 variables.

When a sufficient number of columns of ( )T+1 variables are available,

the U*, V*, and G* can be obtained for T+l. From these, Xk can be

obtained for (13), and therefore the right-hand side of (32) can be

determined. This means that the forward elimination of (41) and (42)

can begin for T+l while the back-substitution of (43) for T proceeds

only a few columns (or strips) ahead. Therefore, we have an algorithm

for solving the system of equations that requires only a few columns

(or strips) of data in the computer storage at one time. No field

needs more than four columns (or strips) of data at once. Inputting

or outputtingof data will occur for only one of these columns (or strips)

at a time. This possibility was the big promise that was to be

investigated with this model.

It is noted that the a's and y's of (41) do not vary in time. This

means that by saving the y's (noting that aji = l/yji), we could reduce

the computation. In the present model, the storage necessary would be

small, and likewise the amount of computation saved would be small.
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But now let's consider a full 3D model. In such a model, (32) will

have the form

where

Either

grid,

in the

be see

I

B_

m 2(Bkxx + Bkyy) + XkBk = Hk, k = 1,2,...,L (4

m is the map factor. There are two usual possibilities.

the model equations are formulated on a polar stereographic

or they are formulated on a grid whose map factor changes only

north-south direction. The relevance of the difference will

!n shortly.

Mn expanded index notation, (44) can be written

k ij1+ [Bk ilj + (i 4)k ij+ Bk i+lj + Bk ij+l f= ~k i~j-l' [Bk i-lj' (4 )B i k ij~l i

where

k Xk 2

ijla m..
l0

im

and A is the grid distance. In matrix notation, we can write

DkBk = Fk

where

Ek IE -TI

-I Ek

0 - I

0

- I

Ek

0...
0...

- I ...

k
E. =

' k
4-Xij

- 1

0

-1

:4 k
4 2j

- 1

0 ...

- 1 .. .

k
4-X3j...·

(46)

(47)

(48)

(49)

4)

5)

k
D
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Bikl X ~~~ ik1 1 0 0

Bk fiBk ik 20 1 0 ..Bk k i2 ()f

i2Bk3 -f 3 0 0 1 ... cont.i3 ~ ~ 

Formally, (48), (49) look like (39), (40). The difference is that

the matrix elements are now matrices themselves. The solution, also,

is formally like (41)-(43), except that multiplications are now

matrix multiplications, and inverses are matrix inverses. In particular,

instead of (41), we have

k = k k -

= k+ Tk50Ak j j+ = 3,4,...,N-1 (50)

k = k- j rk= (A) , = 3,4,...,N-2
J 3

In order to generate the final solution, the F's are required. They

do not vary in time, so they could be calculated once and saved. In

fact, they are generally fairly sparse matrices, with large values

along the diagonal and rapidly decreasing values away from the diagonal.

If we were to save all the rF's, we would be saving LxNx(NxN) numbers for

an NxN grid. For L=6 and N=65, this is 1,647,750 numbers! For each

strip we would need 25,350 numbers in core storage. This would hardly

help the I/O problem that this program logic was designed to alleviate!

However, we may take advantage of the sparseness of the T matrices,

It is found that the rate at which the numbers off the diagonal fall to
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k
zero is determined largely by the size of the i's relative to 1.

The bigger the absolute value of the kt'S (they are negative), the

faster the off-diagonal elements fall to zero. The larger Xk's are

related to the slower internal modes on the model, so that the

smaller X kS of the more rapid gravity wave modes cause the largest

off-diagonal elements in the rF's.

Now, we consider the effect of the map factor on the solution.

If mij varies with both i and j, then each diagonal element of Ej

k,
differs from the next. The same will be true of the rj's and a

rather large storage of numbers is needed. For a 6-layer model with

an isothermal stratification (determining the Sk's) and a two times

variation in m, it is estimated that the storage requirement is

Nx(56N-327). For N=65 this is 215,345 storage locations (words).

k
If mij varies only with j, then each diagonal element of E. will

be the same, and some storage savings can be obtained. In this case,

the estimated storage is 20N2+95N-1390 (NŽ20). For N=65, this gives

89,285 storage locations.

Now suppose that the grid is rotated so the mij varies only with

i. Then each diagonal element of Ek differs from the next, but it is

found that the sequence of r'ls converges to a limit, quite rapidly for

the slow modes, and less rapidly for the faster modes. The savings in

required storage for this case is considerable. It is estimated that

Nx365 (N>20) storage locations are needed, or 7300 for N=65. For

completeness, it is mentioned that for a constant map factor, we could

get away with saving 5071 numbers.



In summary, it appears that the storage requirements are extreme

for general map factor variations, but not too severe for models on

a Mercator, spherical, or similar grids. This presupposes that a

method could be found to store only the required elements of the Fj's,

to catalog them, and to make the required multiplications of the rF's

with other matrices. On a vector machine, it is suspected that the

procedure would be extremely inefficient.

A Note on Accuracy

In the discussion of the last section, it has been assumed that

the elements of the r matrices are neglected if they are 10 4 the

magnitude of the corresponding diagonal elements. There are N

multiplications and N-1 additions required to get each Bij from

Bj+li. The maximum relative error during this process should be

2(N-l)x10- 4. (See Henrici, 1964, p. 169-) BN_2i can be expected

to have this error, while BN_3i would have twice this error, etc.

The average error would be ½(N-1)2(N-l)x10- or (N-1)2x10- 4. For N=65,

the average relative error (maximum) is 0.41! Surely the storage

estimates have been on the low side.

There is another place where accuracy is a consideration, In (4)

the factor ~ has been included. For the Helmholtz equation (13), this

determines the presence or absence of Gk in Xk. Since this is the

dominant term of Xk, the difference is important. If Gk is present,

we solve for the total ¢-field and great accuracy is needed in the
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solution of (13) or (32). Double precision was found to be necessary

on the IBM 360/195 with N=10! If, however, 8=0 so that Gk is not

included in Xk, then single precision is sufficient, even for N=100.

Another Possibility with Variable Map Factor

We consider next an iterative solution of (44) suggested by

J. Gerrity (personal communication). Expand the map factor as a

constant plus a deviation:

m2 = m + A (51)

Then (44) can be written

BkxxB + B kyy + k Bk = -[Hk (Bkxx + Bky(51a)

If we calculate the right-hand side values from the previous iteration,

this can be written

)n+l Xk n+l 1 n(Bkxx + y + k = z[Hk - A(B + Bkyy)
m

3x kyy m k -- [k kxx kyy]

1 A n (52)
= m2[Hk + - Xk Bk]

m

where n is the iterative count. The convergence of this iterative

procedure can be investigated by considering a particular wave

component, for which

( )xx + ( = - K2() (53)

Letting the first guess for the solution be Bk,the solution to

(52) is found to be

B= A) B° + 6 In-1 A )54
Bn = (A_ n + Hk n A X) (54)

m( B =m 2~~~~=0 mn



where

:= [m- K2 + ](55)

Convergence of the scheme is guaranteed by 1 | < 1, or
m

| A < K-m + <) ( < 56)

m+A

Clearly, this is always satisfied if m is chosen within the range of

m2 , i.e., if JAI < m2 .

It is noted from (54) that as n-ow, the first term vanishes.

Therefore, the final solution is unaffected by the first guess. A

good first guess can speed the convergence, however, This cas be seen

~~~o A
easily by letting Bk A in (54).

k k~=0 

If (52) is used to solve (44), then the horizontal solution pro-

cedure shown earlier cannot be followed, Instead, we must complete

the solution for Bk for the entire grid before we can march ahead in

time. The solution can still be performed in strips, however.

Further, the coefficients on the left-hand side of (52) are constant

and uniform in space so that the storage necessary for the matrix

inverses used in the solution to (52) is minimal. Using Bk from the

previous time step for the first guess should provide a first guess

accurate enough to give convergent solutions in only a few scans.

It therefore appears that an efficient method exists for the solution

of (44) with variable map factor. And the method allows all I/O in

strips with potential increase in I/O efficiency.
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Summary

The equations for a semi-implicit model in pressure coordinates

have been outlined. The method of solution for constant map factor

has been given in some detail. And two possible methods of solution

have been given for variable map factor. In all cases, the core

storage is assumed to be arranged in strips. At no time during the

solution is it necessary to use 2D horizontal fields. The feasibility

of totally stripped program logic is considered to be shown. However,

actual calculations have not been made which prove this feasibility.

The 2D model written for this study and its explicit version can

be used in studies of geostrophic adjustment, and other problems.

References

Isaacson, E. and H. Keller, 1966. Analysis of Numerical Methods,

John Wiley and Sons, N.Y., N-.-Y., 541 pp.

Henrici, P., 1964. Elements of Numerical Analysis, John Wiley and

Sons, N.Y., N.Y., 336 pp.

Burridge, D., 1976. European Center for Medium Range Weather

Forecasts, Report No. 1/13/E/RDS/009/1976, 13 pp.

Sela, J. and S. Scolnik, 1972. A Method for Solving Simultaneous

Helmholtz Equations, Mon. Wea. Rev., 100, pp. 644-645.


